Package: robustBLME 0.1.2

Erlis Ruli

robustBLME: Robust Bayesian Linear Mixed-Effects Models using ABC

Bayesian robust fitting of linear mixed effects models though weighted likelihood equations and approximate Bayesian computation.

Authors:Erlis Ruli [aut, cre], Nicola Sartori [aut], Laura Ventura [aut]

robustBLME_0.1.2.tar.gz
robustBLME_0.1.2.zip(r-4.5)robustBLME_0.1.2.zip(r-4.4)robustBLME_0.1.2.zip(r-4.3)
robustBLME_0.1.2.tgz(r-4.5-x86_64)robustBLME_0.1.2.tgz(r-4.5-arm64)robustBLME_0.1.2.tgz(r-4.4-x86_64)robustBLME_0.1.2.tgz(r-4.4-arm64)robustBLME_0.1.2.tgz(r-4.3-x86_64)robustBLME_0.1.2.tgz(r-4.3-arm64)
robustBLME_0.1.2.tar.gz(r-4.5-noble)robustBLME_0.1.2.tar.gz(r-4.4-noble)
robustBLME_0.1.2.tgz(r-4.4-emscripten)robustBLME_0.1.2.tgz(r-4.3-emscripten)
robustBLME.pdf |robustBLME.html
robustBLME/json (API)

# Install 'robustBLME' in R:
install.packages('robustBLME', repos = c('https://erlisr.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/erlisr/robustblme/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:
  • ergoStool - Ergometrics experiment with stool types

On CRAN:

Conda:

openblascpp

2.70 score 1 stars 2 scripts 179 downloads 4 exports 20 dependencies

Last updated 8 years agofrom:695e75f591. Checks:1 OK, 11 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 06 2025
R-4.5-win-x86_64WARNINGMar 06 2025
R-4.5-mac-x86_64WARNINGMar 06 2025
R-4.5-mac-aarch64WARNINGMar 06 2025
R-4.5-linux-x86_64WARNINGMar 06 2025
R-4.4-win-x86_64WARNINGMar 06 2025
R-4.4-mac-x86_64WARNINGMar 06 2025
R-4.4-mac-aarch64WARNINGMar 06 2025
R-4.4-linux-x86_64WARNINGMar 06 2025
R-4.3-win-x86_64WARNINGMar 06 2025
R-4.3-mac-x86_64WARNINGMar 06 2025
R-4.3-mac-aarch64WARNINGMar 06 2025

Exports:hpdkdeFSBTrblmetune.h

Dependencies:bootcodetoolsdoParallelforeachiteratorslatticelme4MASSMatrixminqamvtnormnlmenloptrnumDerivrbibutilsRcppRcppArmadilloRcppEigenRdpackreformulas